Harshitha Machiraju

About Me

I am an AI Engineer and Machine Learning Specialist with expertise in developing and deploying robust deep learning models for various applications. My focus includes enhancing model performance against adversarial attacks, and out-of-distribution scenarios. Recently awarded a PhD from EPFL, I have implemented machine learning and AI systems that address real-world challenges in computer vision, natural language processing, and multi-modal learning. My experience spans data preprocessing, model training, parallelization, and evaluation in various testing environments.

Education

Sep. 2019 - Nov. 2024 PhD in Machine Learning - EPFL, Switzerland

Advisors: Prof. Pascal Frossard & Prof. Michael Herzog

Jul. 2014 - Aug. 2018 B.Tech in Electrical Eng. - IIT Hyderabad, India

Summa cum Laude & Minor in Comp. Sci

Experience

Nov. 2024 - Present **Independent AI Consultant (Remote)**

Designed and trained scalable LLM based systems for health diagnostics

and personalized shopping startups.

Sep. 2019 - Nov. 2024 **Doctoral Assistant** at EPFL, Switzerland

Designed and implemented robust AI models for various applications,

focusing on efficiency, and resilience to distribution shifts.

Sep. 2018 - Aug. 2019 Research Assistant at IIT Hyderabad, India

> Developed and deployed **ML models** for autonomous navigation, including the implementation of adversarial

testing frameworks.

Projects

- Adversarial Subspace Analysis in LLMs: Developed a method to identify low-dimensional subspaces within word embeddings that concentrate the most discriminative features. Demonstrated that critical information learned by LLMs is often **compactly** represented in these subspaces.
- Fairness vs. Adversarial Robustness in LLMs: Demonstrated that adversarial robustness does not guarantee fairness, revealing persistent biases in robust LLMs thus highlighting the need for comprehensive fairness evaluations.
- Lakera's GenAl Security Readiness Report 2024: Played a key role in the development of the Industry-First AI Security Readiness Report, which provides an in-depth analysis of organizational preparedness for AI security in Gen AI applications.
- Efficient Contrastive Learning for Bias Mitigation: Proposed CLAD, a novel and efficient contrastive learning-based training approach that achieved State-of-the-Art on the Background challenge dataset. Work published at **BMVC**.
- Generation of adversarial foggy images for Robustness Evaluation: Pioneered GAN-based creation of adversarial foggy images, marking the forefront of adversarial weather attack exploration within this domain. Work published at WACV.

- Enhancing Neural Network Robustness via Latent Perturbations: Proposed a novel adversarial training
 method based on perturbations in the latent space to increase the robustness of neural networks. Work
 published at IJCAI.
- Test time Input Processing against Image Corruptions: Proposed EREN, a novel, differentiable image processing algorithm tailored to the spectral biases of models. EREN enhances model robustness against diverse image corruptions and achieves superior performance.
- Automating Out-of-Distribution Sample Generation by Leveraging Model Biases: Proposed MUFIA, an
 innovative algorithm automating the generation of out-of-distribution samples by harnessing model
 spectral biases. This work represents a significant advancement in the field, characterized by its
 utilization of spectral biases for the generation of adversarial image corruptions.
- Metric design for Robustness Evaluation under varying Weather Conditions: Pioneered a new metric to gauge the robustness of object detection networks within navigation systems across diverse weather conditions. Oral presentation at ICIP.

Selected Publications

- **HM**, M. Herzog, P. Frossard, "Eren: Enhancing deep learning robustness through image pre-processing," (Under Review), 2024.
- **HM**, M. Herzog, P. Frossard, "Frequency-based vulnerability analysis of deep learning models against image corruptions," (Under Review), 2023.
- **HM**, O. Choung, M. Herzog, P. Frossard, "Empirical advocacy of bio-inspired models for robust image recognition," **CVPR** NeuroVision Workshop, 2022.
- K. Wang, **HM**, O. Choung, M. Herzog, P. Frossard, "CLAD: A contrastive learning based approach for background debiasing," **BMVC**, 2022.
- HM, V. Balasubramanian, "A Little Fog for a Large Turn," WACV, 2020.
- N. Kumari, M. Singh, A. Sinha, HM, B. Krishnamurthy, V. Balasubramanian, "Harnessing the Vulnerability of Latent Layers in Adversarially Trained Models," IJCAI, 2019.
- **HM**, S. Channappayya, "An Evaluation Metric for Object Detection Algorithms in Autonomous Navigation Systems and its Application to a Real-time Alerting System," **ICIP**, 2018 (Oral).

*Complete List on Google Scholar

Skills

Programming Python, C, C++, Java, Matlab, SQL, Kubernetes, Docker, Slurm

FrameworksPytorch, Tensorflow, LangChain, WandB, Hugging Face, Git, Latex, IllustratorLanguagesEnglish (Native), French (Basic), Korean (Int.), Hindi (Native), Telugu (Native)CertificationsBlueDot Impact Intro to Transformative AI, AI Alignment, AI governance

Awards and Recognition

- DeepVision Grant 2019-2021.
- Qualified for **JICA Scholarship**, 2018.
- JENESYS Scholarship 2017, KVPY 2013.
- Special Recognition for a Young Team, IEEE SP CUP, 2016.
- Top 10 teams of IEEE SP CUP, 2016.
- Academic Excellence Award, IIT Hyderabad, 2014.

Community Service

- Reviewer for ECML, CVPR, TIP, ICVGIP.
- **TA** for Signal Processing & Deep Learning courses.
- **Supervision** of many Masters students projects.